130 research outputs found

    ITS implementation plan for the Gold Coast area

    Get PDF
    ITS needs to be used to reinforce the planned major changes to the road functional hierarchy in the District, namely: • the use of Southport-Burleigh Rd. (SBR) as the major regional corridor; • the removal of through traffic from the GCH; • the use of Oxley Dr./Olsen Av./Ross St./NBR as another major north-south by-pass; • the use of Smith St.; NSR/Queen St.; NBR and Reedy Creek Rd. – West Burleigh Road as the major east-west access corridors. There is a need to integrate the proposed ITS measures into the current related plans for the Pacific Motorway and into the overall traffic control strategies for the area as a whole. In addition, the staging of the proposed plan needs to take into account the planned DMR capital Works Program. An index representing the degree of priority to be attached to each network link was developed to assist in the phased implementation of ITS technologies over the next 5 years. 'ITS Index' is made up of five variables, namely: • Accident rate factor • AADT • Volume/Capacity ratio • Delay • % Commercial Vehicles The main components of the ITS plan are shown diagrammatically in Figure 1. The latter assumes that the high level of ITS implementation on the Pacific Motorway will be extended in time to the remainder of that Highway. To assist in the implementation of the road hierarchy system, a new static signage plan should be implemented. This plan needs to reinforce the changes by clearly assigning single road names to corridors and by placing new signs at appropriate locations. Capturing Traffic Data The following corridors should be equipped with automatic traffic monitoring capability in priority order: High Priority ? SBR corridor from Smith St. connection to Reedy Creek Rd. ? Smith St. from Pacific Highway to High St. ? GCH from Pacific Highway to North St. Medium Priority ? Nerang-Broadbeach Rd/Ross St. to Nerang-Southport Rd. ? Nerang-Southport Rd from Pacific Highway to SBR ? Nerang-Broadbeach Rd from Pacific Highway to SBR The Smith St. link from the Pacific Motorway to Olsen Ave. should be considered as a freeway for monitoring purposes. The GCH along the coastal strip needs to be treated as a local distributor rather than as the major corridor. As a result, the future traffic surveillance priority should be low. At least one permanent environmental (vehicle emissions) monitoring station should be set up as part of the ITS plan. The most appropriate site for such a station would seem to be on the SBR corridor at the vicinity of Hooker Blv. intersection. Pacific Highway The Pacific Motorway project will set the benchmark for freeway incident detection and traffic management in the State. The high level of ITS implementation on the Motorway section will create a significant gap in performance and expectation, relative to the remainder of the Highway. It is recommended that the southern sections of the Pacific Highway be equipped to the equivalent level of traffic data collection and surveillance as the newly upgraded Motorway section, under a staged program. Travel Time Savings The travel time benefits of the full implementation of ITS over the network are likely to be of the order of at least 5 percent of vehicle-hours travelled on the affected links. At a discount rate of 6 percent, the total present value of the gross travel time benefit over 10 years is of the order of $200 million

    Green Plants in the Red: A Baseline Global Assessment for the IUCN Sampled Red List Index for Plants

    Get PDF
    Plants provide fundamental support systems for life on Earth and are the basis for all terrestrial ecosystems; a decline in plant diversity will be detrimental to all other groups of organisms including humans. Decline in plant diversity has been hard to quantify, due to the huge numbers of known and yet to be discovered species and the lack of an adequate baseline assessment of extinction risk against which to track changes. The biodiversity of many remote parts of the world remains poorly known, and the rate of new assessments of extinction risk for individual plant species approximates the rate at which new plant species are described. Thus the question ‘How threatened are plants?’ is still very difficult to answer accurately. While completing assessments for each species of plant remains a distant prospect, by assessing a randomly selected sample of species the Sampled Red List Index for Plants gives, for the first time, an accurate view of how threatened plants are across the world. It represents the first key phase of ongoing efforts to monitor the status of the world’s plants. More than 20% of plant species assessed are threatened with extinction, and the habitat with the most threatened species is overwhelmingly tropical rain forest, where the greatest threat to plants is anthropogenic habitat conversion, for arable and livestock agriculture, and harvesting of natural resources. Gymnosperms (e.g. conifers and cycads) are the most threatened group, while a third of plant species included in this study have yet to receive an assessment or are so poorly known that we cannot yet ascertain whether they are threatened or not. This study provides a baseline assessment from which trends in the status of plant biodiversity can be measured and periodically reassessed

    Peritoneal macrophage heterogeneity is associated with different peritoneal dialysis outcomes

    Get PDF
    Peritonitis remains the major obstacle for the maintenance of long-term peritoneal dialysis and dysregulated host peritoneal immune responses may compromise local anti-infectious defense, leading to treatment failure. Whilst, tissue mononuclear phagocytes, comprising macrophages and dendritic cells, are central to a host response to pathogens and the development of adaptive immune responses, they are poorly characterized in the human peritoneum. Combining flow cytometry with global transcriptome analysis, the phenotypic features and lineage identity of the major CD14+ macrophage and CD1c+ dendritic cell subsets in dialysis effluent were defined. Their functional specialization was reflected in cytokine generation, phagocytosis, and antigen processing/presentation. By analyzing acute bacterial peritonitis, stable (infection-free) and new-starter patients receiving peritoneal dialysis, we identified a skewed distribution of macrophage to dendritic cell subsets (increasing ratio) that associated with adverse peritonitis outcomes, history of multiple peritonitis episodes, and early catheter failure, respectively. Intriguingly, we also noted significant alterations of macrophage heterogeneity, indicative of different maturation and activation states that were associated with different peritoneal dialysis outcomes. Thus, our studies delineate peritoneal dendritic cells from macrophages within dialysate, and define cellular characteristics associated with peritoneal dialysis treatment failure. These are the first steps to unravelling the detrimental adaptive immune responses occurring as a consequence of peritonitis

    Divergence of the Yeast Transcription Factor FZF1 Affects Sulfite Resistance

    Get PDF
    Changes in gene expression are commonly observed during evolution. However, the phenotypic consequences of expression divergence are frequently unknown and difficult to measure. Transcriptional regulators provide a mechanism by which phenotypic divergence can occur through multiple, coordinated changes in gene expression during development or in response to environmental changes. Yet, some changes in transcriptional regulators may be constrained by their pleiotropic effects on gene expression. Here, we use a genome-wide screen for promoters that are likely to have diverged in function and identify a yeast transcription factor, FZF1, that has evolved substantial differences in its ability to confer resistance to sulfites. Chimeric alleles from four Saccharomyces species show that divergence in FZF1 activity is due to changes in both its coding and upstream noncoding sequence. Between the two closest species, noncoding changes affect the expression of FZF1, whereas coding changes affect the expression of SSU1, a sulfite efflux pump activated by FZF1. Both coding and noncoding changes also affect the expression of many other genes. Our results show how divergence in the coding and promoter region of a transcription factor alters the response to an environmental stress

    Genes left behind: Climate change threatens cryptic genetic diversity in the canopy-forming seaweed bifurcaria bifurcata

    Get PDF
    The global redistribution of biodiversity will intensify in the coming decades of climate change, making projections of species range shifts and of associated genetic losses important components of conservation planning. Highly-structured marine species, notably brown seaweeds, often harbor unique genetic variation at warmer low-latitude rear edges and thus are of particular concern. Here, a combination of Ecological Niche Models (ENMs) and molecular data is used to forecast the potential near-future impacts of climate change for a warm-temperate, canopy forming seaweed, Bifurcaria bifurcata. ENMs for B. bifurcata were developed using marine and terrestrial climatic variables, and its range projected for 2040-50 and 2090-2100 under two greenhouse emission scenarios. Geographical patterns of genetic diversity were assessed by screening 18 populations spawning the entire distribution for two organelle genes and 6 microsatellite markers. The southern limit of B. bifurcata was predicted to shift northwards to central Morocco by the mid-century. By 2090-2100, depending on the emission scenario, it could either retreat further north to western Iberia or be relocated back to Western Sahara. At the opposing margin, B. bifurcata was predicted to expand its range to Scotland or even Norway. Microsatellite diversity and endemism were highest in Morocco, where a unique and very restricted lineage was also identified. Our results imply that B. bifurcata will maintain a relatively broad latitudinal distribution. Although its persistence is not threatened, the predicted extirpation of a unique southern lineage or even the entire Moroccan diversity hotspot will erase a rich evolutionary legacy and shrink global diversity to current (low) European levels. NW Africa and similarly understudied southern regions should receive added attention if expected range changes and diversity loss of warm-temperate species is not to occur unnoticed.Portuguese FCT (Fundacao para a Ciencia e a Tecnologia) [PTDC/AAC-CLI/109108/2008, EXPL/BIA-BIC/1471/2012, EXCL/AAG-GLO/0661/2012]; [SFRH/BPD/88935/2012]info:eu-repo/semantics/publishedVersio

    Correlates of protection against symptomatic and asymptomatic SARS-CoV-2 infection

    Get PDF
    The global supply of COVID-19 vaccines remains limited. An understanding of the immune response that is predictive of protection could facilitate rapid licensure of new vaccines. Data from a randomized efficacy trial of the ChAdOx1 nCoV-19 (AZD1222) vaccine in the United Kingdom was analyzed to determine the antibody levels associated with protection against SARS-CoV-2. Binding and neutralizing antibodies at 28 days after the second dose were measured in infected and noninfected vaccine recipients. Higher levels of all immune markers were correlated with a reduced risk of symptomatic infection. A vaccine efficacy of 80% against symptomatic infection with majority Alpha (B.1.1.7) variant of SARS-CoV-2 was achieved with 264 (95% CI: 108, 806) binding antibody units (BAU)/ml: and 506 (95% CI: 135, not computed (beyond data range) (NC)) BAU/ml for anti-spike and anti-RBD antibodies, and 26 (95% CI: NC, NC) international unit (IU)/ml and 247 (95% CI: 101, NC) normalized neutralization titers (NF50) for pseudovirus and live-virus neutralization, respectively. Immune markers were not correlated with asymptomatic infections at the 5% significance level. These data can be used to bridge to new populations using validated assays, and allow extrapolation of efficacy estimates to new COVID-19 vaccines

    Characterizing Lenses and Lensed Stars of High-Magnification Single-lens Gravitational Microlensing Events With Lenses Passing Over Source Stars

    Get PDF
    We present the analysis of the light curves of 9 high-magnification single-lens gravitational microlensing events with lenses passing over source stars, including OGLE-2004-BLG-254, MOA-2007-BLG-176, MOA-2007-BLG-233/OGLE-2007-BLG-302, MOA-2009-BLG-174, MOA-2010-BLG-436, MOA-2011-BLG-093, MOA-2011-BLG-274, OGLE-2011-BLG-0990/MOA-2011-BLG-300, and OGLE-2011-BLG-1101/MOA-2011-BLG-325. For all events, we measure the linear limb-darkening coefficients of the surface brightness profile of source stars by measuring the deviation of the light curves near the peak affected by the finite-source effect. For 7 events, we measure the Einstein radii and the lens-source relative proper motions. Among them, 5 events are found to have Einstein radii less than 0.2 mas, making the lenses candidates of very low-mass stars or brown dwarfs. For MOA-2011-BLG-274, especially, the small Einstein radius of θE0.08\theta_{\rm E}\sim 0.08 mas combined with the short time scale of tE2.7t_{\rm E}\sim 2.7 days suggests the possibility that the lens is a free-floating planet. For MOA-2009-BLG-174, we measure the lens parallax and thus uniquely determine the physical parameters of the lens. We also find that the measured lens mass of 0.84 M\sim 0.84\ M_\odot is consistent with that of a star blended with the source, suggesting that the blend is likely to be the lens. Although we find planetary signals for none of events, we provide exclusion diagrams showing the confidence levels excluding the existence of a planet as a function of the separation and mass ratio.Comment: 14 pages, 12 figures, 5 table

    Elective cancer surgery in COVID-19-free surgical pathways during the SARS-CoV-2 pandemic: An international, multicenter, comparative cohort study

    Get PDF
    PURPOSE As cancer surgery restarts after the first COVID-19 wave, health care providers urgently require data to determine where elective surgery is best performed. This study aimed to determine whether COVID-19–free surgical pathways were associated with lower postoperative pulmonary complication rates compared with hospitals with no defined pathway. PATIENTS AND METHODS This international, multicenter cohort study included patients who underwent elective surgery for 10 solid cancer types without preoperative suspicion of SARS-CoV-2. Participating hospitals included patients from local emergence of SARS-CoV-2 until April 19, 2020. At the time of surgery, hospitals were defined as having a COVID-19–free surgical pathway (complete segregation of the operating theater, critical care, and inpatient ward areas) or no defined pathway (incomplete or no segregation, areas shared with patients with COVID-19). The primary outcome was 30-day postoperative pulmonary complications (pneumonia, acute respiratory distress syndrome, unexpected ventilation). RESULTS Of 9,171 patients from 447 hospitals in 55 countries, 2,481 were operated on in COVID-19–free surgical pathways. Patients who underwent surgery within COVID-19–free surgical pathways were younger with fewer comorbidities than those in hospitals with no defined pathway but with similar proportions of major surgery. After adjustment, pulmonary complication rates were lower with COVID-19–free surgical pathways (2.2% v 4.9%; adjusted odds ratio [aOR], 0.62; 95% CI, 0.44 to 0.86). This was consistent in sensitivity analyses for low-risk patients (American Society of Anesthesiologists grade 1/2), propensity score–matched models, and patients with negative SARS-CoV-2 preoperative tests. The postoperative SARS-CoV-2 infection rate was also lower in COVID-19–free surgical pathways (2.1% v 3.6%; aOR, 0.53; 95% CI, 0.36 to 0.76). CONCLUSION Within available resources, dedicated COVID-19–free surgical pathways should be established to provide safe elective cancer surgery during current and before future SARS-CoV-2 outbreaks
    corecore